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ON THE CRYPTOCOMPLEXITY OF KNAPSACK SYSTEMS

by

Adi Shami r

Department of Mathematics

Massachusetts Institute of Technology

February , 1979

Abstract: A recent trend in cryptographic systems is to
base their encryption/decryption functions on NP-complete
probl ems , and in parti cular on the knapsack problem. To
analyze the security of these systems, we need a complexity
theory which is less worst-case oriented and which takes i nto
account the extra conditi ons imposed on the probl ems to
make them cryptographically useful . In this paper we con-
sider the two classes of one-to-one and onto knapsack
systems , analyze the complexity of recognizing them and of
solving their instances , introduce a new comp lex ity measure
(median complexi ty), and show that this complexity is in-
versely proportional to the density of the knapsack system.
The tradeoff result is based on a fast probabilistic knap-
sack solving algorithm which is applicable only to one-to-
one systems , and it indicates that knapsack-based crypto—
graphic systems in which one can both encrypt and sign
messages are relatively insecure .

Kay words and phra~~.: Cryptography, Digital signatures,
NP—compl.te problem., Knap.a.:k problems.
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1. Introduction

Cryptography, which has always been considered an esoteric mixture of

art and science, is rapidly gaining respectability as an important branch

of complexity theory. One of the major reasons for this change is our

increasing ability to prove (or at least to give strong supporting evidence)

that certain computational tasks are inherently difficult. Such results

may be discouraging news for engineers, but in the context of cryptosystems

they can make the construction of unbreakable super-codes possible. In

fact, cryptosystems may turn out to be the most important positive appl ica-

tion of the theory of lower bounds, since they seem to be the only case in

which impossibly difficult computations are desirable.

In spite of this close relationship, the tools of standard complexity

theory are not very wel l suited to the needs of cryptography. Even when —

we solve the major open problems (such as the Pp~NP conjecture ) we cannot

claim that cryptosystems based on difficult (e.g., NP-complete) problems

are secure, for the following reasons:

(1) The standard measures of worst-case and average-case complexities are

completely inadequate. The existence of some heuristic technique

which solves a positive fraction (say, 1/1000) of the instances in

polynomial time is enough to make the cryptosystem useless, even if

the average case complexity of the heuristic is exponential or if It

fails to work correctly on the vast majority of the cases. What we

need is a theory of “amost everywhere di fficul t” computational tasks.

(11) ComplexIty theory usually considers the difficulty of a single isolated

Instance of a computational task. In cryptanalysis , we are often

given a big collection of related problems (e.g., many cyphertexts
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generated by a coninon cryptosystem and key) to which we can apply

statistical methods, analysis of repeated patterns, etc. It is not

clear how to inc l ude such factors in the complexity-theoretic

analysis of a cryptosystem.

(iii) One cannot take an arbitrary difficult computational task and transform

it into a cryptosystem. In order to be useful in secret-coimwnication

sys tems , the encoding functions must be one-to-one , and in order to

be useful in certain signature generating systems, the encoding functions

mus t be on to (or almo st onto - see bel ow). These extra con diti ons
(which are not usually dealt with in complexity theory) can have a

major effect on the security of the cryptosystem.

In order to handle these problems , a new theory of cryptocomplexity

must be developed , wi th a particular emphasis on the cryptocomplexity of

NP-complete problems. In this paper we consider the special case of the

knapsack problem (upon which many of the newer cryptosystems are based)

in order to get sharper results, but we believe that some of the ideas and

results can be extended to other NP-complete problems as well. An excel l ent

survey of the problems and achievemen;s in this area can be found in Lempel (5].

2. DefinItions

A cryptosystem is a col lection of pairs consisting of an encryption

function EK (which maps cleartexts Into cyphertexts) and a 
decryption

function D (which maps cyphertexts back to cIeartexts), such that

DK(EK(M)) M for every cleartext Fl and ~~y K (th is impl ies that EK must

be one-to-one). In classic cryptos~~tems, the two comunicating parties

share a coimnon pair of encryption/decryption functions which enable them

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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to communicate over insecure channels. In public-key cryptosystems [1], each

user publicly reveals his encryption function but keeps his decryption

function secret. When user A wants to send a messa ge M to user B, he can

compute EB(M) quickly, but only B can decrypt it back to M. If in

addition EK(DK(M)) = M for every message M and key K (i.e., if EK and

are inverse permutations over the same mess age space) then A ca n ~jgn

a message Fl by computing DA(M); this signature can be easily authenticated

by applying the publicly known EA to it, but it cannot be forged on

other messages.

In many cryptosystems, t is difficult to make the function EA onto,

and thus not all the possible messages can be signed . The density of a

cryptosystem is defined as the fraction of the signable messages among all

the messages. In high-density cryptosystems this ratio is close to one ,

and thus messages can be signed either directly or after a slight perturba-

tion of some unimportant bits. In low-density cryptosystems, too many trial

perturbations are necessary and signatures become impractical .

Publ ic-key cryptosystems based on NP-complete problems use the

asyninetric relation between problems and their solutions. The easy

encryption functions assign to each solution (= cleartext) some problem

(
~ cyphertext) for which it is the unique solution , and the difficult

• decryption functions solve these problems in order to recover the original

cleartext. The most popular of these cryptosystems use the knapsack 
•

problem , for which we give a precise definition below . r
A knapsack system K is a finite sequence of natural numbers (generato~sJ

A knapsack problem (or i nstance) Is a knapsack system + a

target value b; the problem is to determine if b has a 0-1 valued

_______
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representation c1,. .. ,c~ such that .

~~~~~ 

c~a~ = b (in a modular knapsack

problem, this equation should hold modulo a given modulus m). The knapsack

problem is known to be NP-complete both in its modular and in its non-

modular versions. The cleartexts in a knapsack system K are the represen-

tations c1,...,c~ while the cyphertexts are the corresponding target values b.

The system is one-to-one if every target value has at most one representation

in K, and onto if every possible target val ue has at least one representation

in K (the possibl e target values in the non-modular case are all the

integers in the interval [O,.E1
a
~
], and in the modular case all the integers

in the interval [0,m)).

Knapsac k systems seem to be an ideal source for encryption functions ,

since they are numeric (and thus easy to impl ement electronically), fas t

(need n-l additions and possibly one modular reduction), and probably

uniformly hard to invert (in the sense that there are extremely few knapsack

systems for which fast inversion algorithms or heuristics are known).

3. Characterization of one-to-one or onto knapsack systems :
As described in the introduction , the cryptographically interesting

knapsack systems are those which are one—to-one or onto. In this section we

consider the problem of characterizing these two sets of knapsack systems.

From the probabilistic point of view , we have :

Theorem 1: A random modular knapsack system wi th n generators and modul us m

1is l ikely to be one-to-one when n < ~ log2m and non one-to-one otherwise.

Proof (Sketch ): For randomly chosen modular knapsac k systems, the

target values corresponding to the 2” poss ible representations are

- r --—



distributed very uniformly (with possibl e repetitions) in the [0,m)

interva l . When success ive representations are enumerated (e. g., in

lexicographic order on the n-bit sequences) and their corresponding

target values are marked on the interval , the first repeated marking

of a point is likely to occur around the viIi stage (this is a variant

of the birthday problem in probability theory - see [2]). Thus if

2n < 41i a repeated marking is not likely to occur , while if 2’~ >

it is. Interpreting a repeated marking as a knapsack system which is

not one-to-one and taking binary logari thms of these inequalities

give the desired result. Q.E.O.

Theorem 2: A random modular knapsack system with n generators and modulus

m is likely to be onto when n > log2m + log2log2m - log2log2e and

non-onto otherwise.

Proof (Sketch): Using the random marking paradigm again , we woul d like to

know how many points should be marked at random (with possible repetitions)

on the [0,m) interval before all the points are likely to get marked at

least once. The probability that a particular point remains unmarked

after one marking stage is 1 - 1/rn , and after ~ marking stages it is

P = (1 - 1/rn)’rn,n
The expected number of unmarked points at the end of the marking

process Is m
~
Pm n  , and thus the knapsack system is likely to be onto

when m •P < 1 and non—onto when ,n~P > 1. To find an explicitm,n m,n
relation between tn and n we evaluate

msPm ,n = m’(l 1 )2 = n.[1 ~~)m12 /m ~ 
m.e~~

/m 
.
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The turning point is when

n n
rn•e 2 /m 1 or m = e2 /m

Taking repeated logari thms , we get

log2m = (2”/m)log2e

and then

log2log2m = n— log 2m+lo g2log2e

which , after rearranging the terms, gives the desired result. Q.E.D.

Example: A 200 element modular knapsack is likely to be one-to-one when

its modulus and generators are over 400 bits long; it is likely to be

onto when its modulus and generators are less than 192 bi ts long.

These results show that the expected complexity of solving instances

of a random knapsack system with n generators which are k bits long is at

most exponential in min(n ,k), and thus systems in which n and k are very

different should be avoided . The reason is that if n >> k, we can

eliminate all but O(k+log k) of the ii generators and still expect to

be able to represent every target val ue; if k >> n , we can consider just

the 2n lowermost bits in the generators and still expect each represent-

able target value to have only its original representation .

Al though these theorems give us some insight into the average-case

behavior of knapsack systems, they obviously do not enable us to decide

whether a particular knapsack system Is one-to-one, or onto. The difficulty

of these decision problems is considered in the next group of results:

_ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _  _ _—



II

Theorem 3: Deciding whether a given knapsack system is one-to-one is

co-NP complete .

Proof: The decision probl em is clearl y in co-NP , since there is always

a short proof that a given system is not one-to-one (namely, the two

representations i nvolve d ).

To show completeness , we reduce the partition problem to the

non-one-to-one problem . The partition problem (which is NP-complete —

see [4]) is to decide whether the equation c.a. =0 has a sol ution
i=l ~ 1

in which c,~ e {—l ,+l} for all I.

Lemma 4: A knapsack system a1,. ..~
an is not one-to-one if and only if the

equation c.a. =0 has a non-trivial solution in which c. c {-l ,O ,+1}
i=l 1 1 1

for all i .

Proof: If the knapsack system is not one-to-one , then some target value b

has two different representations c1’,...,c~ and ~~~~~~~ :

~ 

c~a~ = b , 
~~ 

c!~a~ = b.

in which each c1 = c~ -c~ is -1 , 0 or +1 , and at least one of the c.~

is not 0.

Converse ly, if the equation has a non-trivial solution c ,.. . ,c1 n
let us define

1 if c. = 1 1 if c. = -l
c = 1 c~ = 1
1 0 otherwise 0 otherwise

It is easy to see that c
~ 

= c~ - c~ for all i , and thus the equation

c1a1 
n

0 Impl ies  

n
E c’a. = E c”a

i=l i 1 1=1 1 I

:. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , _
~~~~~~~~~ •~~~ -
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which gives two different representations for the common value of

these terms. Q.E.D.

Proof of Theorem 3 (continued): Gi ven a partition problem al,...,ak, we

would like to construct a knapsack system ~~~~~~~ in such a way that

Z c.a. = 0 has a solution with c- c {-i ,+l} 1ff c ’.a ’ = 0 has a
i=l 1 1 1 1=1 1 1

non-trivial solution with c~ c {-l ,0,+1}. The n = 2k -i numbers a~
are defined as follows :

23k.ai +2
31 1 < i < k — i

k— i ~~
.

a~ = 2 •a. + E 2.J1 I = k
1 1 i=l

k+ 1 < I < 2k-i

The easiest way to understand this reduction is to consider the numbers

a as bit strings . The bit strings of numbers a~ in the first group are

composed of prefixes (into which the bit strings of the original a
~ 

are

left-shifted) plus 3k-bit suffixes (in which single characteristic bits

are turned on). The number a~ is similarly defined , except that all

the characteristic bits of the previous k - 1 numbers are turned on in

its suffix. Finally, the numbers a
~+k 

in the last group have empty

prefixes , and their suffixes are (numerically) twice as big as those

of the corresponding a~ numbers.

To show that 
~~~~~~~~~ 

has the desired properties , assume that

c4a~ = 0 has a solution wi th c~ c {-l ,+l} . We define the coefficients :-
I =1 U I

in the following way:

— ••;
_ 

- 
, —— —. •~~~— - 

.
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if i < k

O if i > k a n d c. k $c kc. = 1—

—l if i > k a n d cl k = c k =+ l

+1 if i > k a n d c
~_k

= c k = _l

2k-i
To show that .E1 ~~~ = 0, we cons ider separately the prefix and

suffix regions in this equation . The prefix parts are not empty only

in ~~~~~~~ . Since they are equal to al,...,ak and the coefficients

~~~~~~~ are equal to c l,...,ck, the prefix regions in the equation

sum up to zero by assumption . In the suffix parts, the 1th group of

3 successive bits is not empty only in a1 (where it is 001), in

ak (where It is 001) and in ai+k (w here i t is 010); our choice of c ,

c~ an d c ’+k makes sure that all these 3-bit groups of bits add up to
1 2k—i

zero , and thus the suffixes as a whole add up to zero in .E ~~~~1 l  1 1

To show the converse , let cl,...,c2kl be any non-trivial solution
2k- 1

of E c!a~ = 0, wi th c! ~ {—l ,0,+l}. Taking c. = c~ for i = l ,..., k
1 = 1 1 1  1 1

and considering the prefix parts of these equations , it is easy to see

that .~~~ c.a. = 0. What remains to be done is to show that this
i=l 1 1

solution is l egal , i.e., that none of the c1 is 0.

Since the max imum summed va lue in each group of 3 success ive bit s

in the suffix is 4 (in binary 001 + 001 + 010 = 100), there can be no carry

from one group to the next , and thus each group must sum up to zero

independently. The only coefficients (ci , c~, Cj ~~~) which can make

the groups 001 in a~, 001 in a~ and 010 in a +k sum up to zero are

(0,0,0), (+i ,+l ,-l), (-1 ,-l ,+l), (+l ,-l ,O) and (-1 ,+l ,O). For different

va l ues of i , different coefficient triplets can be chosen from this set,

provided that the comon c~ entries get consistent values In all the tripl ets.

— 

~~~~~~~~~ - -. .
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Since ~~~~~~~~~ is non-trivial , there is at least one i for which

(c~,c~,c~~1) i~ (0,0,0), and thus c1~ ~ 0, which implies that c~ $ 0

for all 1 < I < k. Q.E.D.

Corollary 5: Deciding whether a given modular knapsack system is one-to—one

is co-NP complete.

Proof: When m > a1 the modulus is i rrelevant, s ince no modular reductions
can ever take pl ace. Q.E.D.

The s i tuat ion wi th  respect to the onto property is quite different:

Theorem 6: Deciding whether a given knapsack system is onto is doable in

polynomial time . -
n

Proo f: We show by induction on n that the whole interval (O ,~Z a.] isi=l 1

representable in the knapsack system al,...,an (in which the a1 are
arranged in non-decreasing order) 1ff a~ < l + a~ for all l < j < n

(this condition is clearly decidable in polynomial time). It is true for

any s ingle element knapsac k system s ince [0,a1] is representable iff a1 cl .

Let 
~~~~~~~~ 

be an n+l element knapsack system in which

a~ < 1 + ~E~a1 for all 1 < j < n. If a~~1 > 1 + •~1
a1 = b, then the

target value b cannot be represented although it is in the interval .

On the other hand , if a +1 < b, then every target value in [0,.E a1]

Is either in the subint:rval [0,b—1] (where it Is representable with

= 0 by the induction hypothesis) or in the subinterval [an+i ,

a~~1 +b -l] (where it is representable wi th c~,,,.1 = 1). Note that the

two subintervals may overlap, and thus some target values may have

representations of both forms. Q.E.D.

_ 
- 

iJ..
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The complexity of the modular onto decision problem is still open .

No simple charac ter ization was found, and in fact it i s not even clear

whether the problem is in NP union co-NP. We conjecture that the problem

is very difficult , perhaps even ¶2-compiete (it is in ~2 
since it has the

form “for all target values , there exists a representation” — see Ill]

for more details).

These results show that we cannot effectively characterize all the

cryptographically-useful knapsack systems. All we can hope for is to

characterize certain subsets of them, such as the Merkie-Heliman [6 ]

and the Graham-Shamir [ioi one-to-one knapsack systems and the onto
knapsack systems described in [9].

An interesting open problem is whether knapsack problems remain NP-

complete when restricted to knapsack systems which are one-to-one. The

same question can be asked about the complexity of other similarly

restricted NP-complete problems (propositiona l formulas with at most one

satisfying model , graphs with at most one hamiltonian cycle, etc.). As far

as we know , none of these problems have been shown to be either NP-complete

or polynomially solvable.

4.~ Properties of one-to-one knapsack systems

A basic property of one-to-one knapsack systems, which will be used

in the sequel , is:

Theorem 7: Let al~
...,an be a one-to-one (modular or non-modular) 

knapsack g
system, let I be an arbitrary index between 1 and n and let b and b+a 1

be two target values whose representations (if they exist) are denoted

~
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by ~~~~~~~ and ~~~~~~~ respectively. Then:
(I) If both b and b +a

~ 
are representable, then c 1 = l  if and only

if c~ = 0.

(ii) If b is representable but b +a 1 is not , then c1 = 1.

( i i i )  If b + a
~ 

is representable but b is not , then c~ = 0.

Proof: (i) If C1 = c~ = 0, we can add a ., 
•to the representation of b

(i.e., change c1 from 0 to 1) in order to get a second (and different)

representation for b +a 1. If c1 = c~ = 1, we can subtract a1 from the

representation of b +a 1 (i.e., change c~ from 1 to 0) in order to get

a second (and different) representation for b. Both cases clearly

contradict the assumption that the knapsack system is one-to- jne.

(ii) If b had a representation tn which c 1 = 0, then by changing

c1 to 1 we would get a representation of b+a 1, and a contradiction .

(iii) If b+a 1 had a representation in which c = 1 , then by

changing c~ to 0 we would get a representation of b.

Q. E.D.

This theorem shows that in one-to-one knapsack systems, the sequence

of c1 values in the representations of successive multipl es of some fixed

generator a 1 (O•a 1, l•a 1, 2•a1, ...) is extremely uniform. Denoting by ?

the undetermined value of c1 when the multipl e is unrepresentable, a

typical sequence is:

01 01 01 ?0101???OlOl 010’. t?O1....

This result is particularly important in modular systems, since the set

of (modular) mul tiples of a1 contains all the possible target val ues

whenever a1 and m are relatively prime.

~~~~~~~~~~~~~~~~~~ 
-

‘ 
,
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We now turn to consider some transformations which can be applied

to knapsack systems without changing their one-to-one or onto character :

Lemma 8: If al,...,an (m) is a one-to-one (onto) modular knapsack system and

d is relatively prime to rn then the augmented knapsack system

~~~~~~~~ (rn) is also one-to-one (onto).

Proof: Since d is relatively prime to m , it has a modular inverse, dd~

(mod rn), and thus

c.(da.) b (mod m) 4r~~. c.a. bd~ (mod m).
i 1  1 1 1 1  1 1

Consequently, the number of representab le target values in the two

systems is the same, and mul tipl e representations occur in one system

1ff they occur in the other (with target values b and bd~~, respec ti vely).
- Q.E.D.

Lemma 9: If a1 ,... ~~ (m) is a one—to-one 
(onto) modular knapsack sys tem, then

the knapsack system obtained by replacing any subset of the a1 s by

their complements rn-a 1 is also one-to-one (onto).

Proof: It is enough to show that a single complementation of a1 to m - a1
leaves the system one-to-one (onto) . If b has two representations

and ~~~~~~~ in the new system, then

b E c1(m- a1)+ E c4a4 c~(m-a ,)+ E c~a4 (mod m)
I I 1=2 I U I I i=2 ‘

•
and thus

n n
b+(c 1+ cfla1 c~a1 + E c 1a1 c1a1 + i: c~a (mod m) ,

1—2 ‘ 1=2
i.e., Cj s C2~~~•~

Cn and c1, ~~~~~~~ are two different representations :

of a common target value In the old system. Similarly, b can be

- — 
- .
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represented In the new system 1ff b +a 1 can be represented in the old

system, since

n n
b+a 1 = E c.a. (mod m)#*’ b = (1 -c 1 )(m-a1 )+ Zc 1a1 (mod rn)

i=l 1 1 1=2

Q.E.D.

We end this section with the following technical observation :

Lemma 10: If ~~~~~~~ (m) is a one-to-one modular knapsack system in

which u target val ues are unrepresentable , then m = 2’1+u.

Proof: The 2I
~ possible representations generate 211 different representable

target values ; all the other m - 211 poss ib le target values are

unrepresentable. Q.E.D.

5. Permutation knapsack systems

The i deal knapsack system from the cryptographic point of view is one

which is both one-to-one and onto (i.e., a permutation). While each one of

the two properties is bel ieved to be very hard to check , their intersection

Is surprisingly easy : •

Lemma 11 : The knapsack system a ,...,a def ines a permutation if and only

If (under some reordering) each a1 is eactly 21~~.

- - Proof: An easy extension of the proof of Theorem 6.

Theorem 12: The modular knapsack system a1....,a~(m) defines a permutation

if and only If m = 2 ’1 and (under some reordering) each a1 has the

following form: n- i arbitrary leading bits followed by 1 followed by

1- 1 traIling zeroes.
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Proof: By Lemma 10, m= ~~1~~
• At least one of the generators (say, a1) must

be odd , s ince if all the generators (and the modulus) were even , odd

target values could not be represented in the system. This odd generator

is relatively prime to m , and thus multiplying all the generators by

aj~ (mod m) creates a new normali zed knapsack system ~~~~~~~~ (m)

which is also one-to-one and onto by Lema 8.

All the multipl es 0•l , 1.1 , 2.1, 3.1, ... of the f i rst generator
are representable , and thus by Theorem 7 the coefficient c1 al ternates

between 0 in the v~epresentations of even numbers and 1 In the representa-

tions of odd numbers . Since the generators a~,...,a, have trivial repre-

sentations of the form 0.. .010.. .0, they must all be even.

- The proof can now proceed by induction . Since the generators, the

modulus and the representable numbers are a ll even in the subsystem

ak,. .. ,a,~ (in), we can divide them by 2. Applyi ng the characteri zation

in the theorem to the permutation system a~/2,. . . ,a~/2 (m/2), we know

that each a~/2 (2 < I < n) ends wi th a 1 followed by 1- 2 trailIng

zeroes , and thus each a~ ends with a 1 followed by I - 1 trailing zeroes.

Since a1 a1’a~ (mod 211) and a1 is odd , thi s also characteri zes the

structure of the original generators a1 .

The other direction (showing that any modular knapsack system

with this structure defines a permutation) is left for the reader as an

easy exercise. Q.E.D.

As noted by many researchers, the complexity of inverting permutation

•ncryptlon functions cannot be any higher than ~ - NP fl co-NP, and thus It is

not likely to be NP-complete. (The uniqueness of the solution enables us

to give short proofs both for the question “Is there a solution satisfyIng 

- - F-  - ~L.
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property P” and to its converse “do all the solutions satisfy —P”.) In the

special case of knapsack-based encryption functions , we can use the
characterization theorems in order to get the stronger result:

Corollary 13: All the knapsack problems generated by (modular or non-

modular) permutation knapsack systems are polynomially solvable.

Proof: In the non-modular case, there is only one permutation knapsack

system of each size, and it defines an Identity mapping . In the

modular case , there are ~~~~~~~ non-isomorphic permutation knapsack

systems of size n (they differ In the leading bits of the generators),

but their structure makes it easy to determine successive C~
1 S in

the representation of each b (c1 = 0 1ff b is divisible by 2, c2 = 0

1ff b - c 1a1 is divisible by 4, etc.). Q.E.D.

Thus, unl ike the Rlvest-Shamtr-Adleman factorization cryptosystems

(see [8 ]) , rio single --knapsack-based cryptosystem can both encode and

sign arbitrary messages.

What happens when the onto condItIon is allowed to have a few excep-

tions? An Illustrative result Is:

Theorem 14: The modular knapsack system a1 ,...,a11 (in) is one-to-one, and

onto wi th a single exception b0, if and only If m = 211+1 and (under L
some reordering) each a1 is either a1.2

1
~~(mod m) or m - a1 .2

1
~~(mod m).

Proof: We fIrst show that all the generators a1 are relatively prime to

the modulus m=2 ~’+l . If (a1,m) > 1, then the cycl ic sequence of

numbers b0+l+O .a 1, b0+l+l ’a 1, b0+1+2 ’a 1 , ... (mod m) contains
fewer than m distinct elements, arid in particular it does not contain

b0. Consequently, all these numbers are representable, and by

Theorem 7 the C1 In their representations alternate 
between 0 and 1.

- - . 1• • ‘-.-~~.



- -  
- • 

P

-17--

The l ength of the cycle must therefore be even , but this coritraaicts

the fact that this length must also be a divisor of the odd modulus m.

We can now multiply the generators by aj~ in order to normalize

the knapsack system to l ,a2,...,a~ (in). Since m is odd , exactly one of

eac h a~,m—a~ pair is even and thus by Lema 9 we can transform this

knapsack sys tem to ~~~~~~~~ (in) in which all the generators except

the first are even , and in whi ch they are listed in non-decreasing

order. If we can show that a~ = 2
1_ i 

for all i , we get the desired

characterization of the original knapsack system by unwinding the two

normalizing transformations we appl ied to it.

The sequence of C
1 

values in the representations of m successive

multiples of the generator 1 has the following form:

01 01. . .01 ?01 01.. . 01.
Consequently, the subsystem a~,.. . ,a~ represents all the even target

values in the range [0,b0) and all the odd target values in the range

(b0,m). Since the generators a~,. . . ,a~ themselves are even , they are

all smaller than b0 .

If there is any odd target value in [0,m) which is representable

in a~,.. .,a~ (ni), let b1 be the smallest. By changing some C ., fr um

1 to 0 In the representation of b1, we get a representation of the

smaller odd target val ue b1 -a 1 (modul ar wraparound cannot occur s i nce

a1 < b~ < b1) — a contradiction . Thus a~,. . . ,a~ can represent only

even target values in [0,m) and b0 = rn - i = 2~~.

If (without modular reduction ) ~ a ’~ > m , there i s some j  such
1—2

that b — ~E
’aII 

< m and b - b~+a ” > in. As a sum of even generators2 i—2~ 
3

b2 (mod in) is even, but b3 (mod in) (which is actually b2+a~ - i n )  is odd.

This contradicts the assumption that no odd number in the interval 

- 

~~~L~~ - ~~ - -
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[0,m) can be represented in a~,.. . ,a,~ (in).

This leaves us with a one-to-one knapsack system a~,. . . ,a~ in
which all the even numbers are representabl e and in which no modular

reductions can ever take place (since •~2
a~ < in). By Lemma 11 , the

only knapsack system having this property is a~ = 21~~, 2 < I < n.

Q.E.D .

A similar (but somewhat more complicated ) characteri zation was found

for modular one-to-one knapsack systems which are onto with two exceptions. - 
-

We haven ’t carried out this detailed analysis any further, but we conjecture

that all the modular one-to—one knapsack systems with sufficiently high

density are recognizabl e in polynomial time , and that all their associated

knapsack problems are solvabl e In polynomial time . The characterization

problem is likely to get harder and harder as the density decreases, s i nce

in the absence of the density condition it is co-NP complete .

6. A new complexity measure for cr~~tographic systems

As described in the Introduction , both the worst-case and the average-

case compl exity measures are inadequate in the context of cryptography,

since the security of a cryptographic system depends on the complexity of

the easiest (rather than the most difficult) instances of the underlyin g

problem . When a cryptanalyst tries to decode a batch of intercepted

messages, he does not crack them In sequence, regardless of computational

effort. Instead, he determines a threshold of effort beyond which Individual

decoding attempts are abandoned . The cryptanalysis is likely to succeed

If a suffic1e~tly hign percentage of the possible messages is decodable
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wi thin this time threshold. Note that the actual complexity of the unsolved

cases (which can have a strong influence on the average-case complexity)

does not matter in this model .

The new complexity measure , which we call median complexity , is

essentially a worst case measure on the easier half of the instances. More

formally, we define :

Definition: A problem P(x) (where P is a predicate or a function on

instances x) has a median complex itl C(n) if there exists an algorithm

A for it such that for each size n , A solves at least half the instances

x whose size is n within time C(n).

An obvious generalization of this definition is to replace the “half”

by a fraction parameter 0 <~~~ < 1; the resultant percentile complexity

C(n ,a) gives for each n and x the complexity of the easiest c& of the

instances of size n.

Example: Consider the following factorization problem: For each input x

(a natura l number in binary notation), we have to print out “PRIME” if

x is a prime number , and some non-trivial factor if x is composite. The

median complexity C(n) of this problem is 0(1), since for half the

numbers of each s i ze , 2 is a non-trivial factor. The algorithm can be

extremely slow on the odd inputs (say, using exhaustive search) without

affectIng this median complexity . What is the percentile complexity

of this factoring problem?

The new complexity measure enables us to define the following Important

property of cryptographic systems:

- - 
I ~~~~~~ — -
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Definition: A problem is unifo rm if there is a polynomial q which bounds
its worst-case complexity to q(_L)c(n ,c~0) for every fraction and C(n ,a)
al gorithm that solves it.

This definition states that for each fixed fraction a0,the worst case

complex ity C(n ,l) is not much bigger than the complexity of the easiest a

of the instances , and thus a difficult uniform problem is not likely to

have sizeable easy subsets of instances. An example of a problem with a

uniform behavior was recently discovered by Rabin [7 ]. He considered the

(apparently difficult) problem of taking square roots modulo a composite

num ber m, and showed how to transform each instance of this probl em into

any other instance , with uniform probability distribution. By trying

random trans forma ti ons , any C(n ,a0) algorithm for taking the square roots

of a fraction of the numbers modulo in, can be made a probabilistic

0(~— C(n ,ct0)) algorithm for taking the square roots of all the numbers

modulo m.

Randoml y chosen modular knapsack systems with many more generators

than bits (see Theorem 2) seem to have a similar uniform behavior , although

in a less rigorous sense of the word . The transformation in this case

consists of subtracting a random subset of the first half of the generators

from the target value b , and representing the new target value b’ in terms

of the second hal f  of the generators. If each half of the generators is

an onto knapsac k system, then b can be transformed to any other target

value b’ (typically with a fairly uniform distribut ion), and any such b’

has a representation . The coefficients of the generators in both halves

give us a legal representation of the original’ target val ue b.

____ ~ 
j .
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In the next section we demonstrate the usefulness of the new complexity

measure by showing that the median co ~lexity of solving modular knapsack

problems is inversely proportional to the density of their associated

systems, and thus all the very—high—density one-to-one modular knapsack

systems (which we were unable to characterize explicitly) are cryptographi-

cally insecure . Both the worst-case and the average-case complexity

measures seem to be inadequate for this purpose .

7. Tradeoffs between the density and security of modular knapsack slstems.

A simple way of motivating our result is as follows . If a complicated

but smoothly-behaving function f has to be evaluated at many points , it

makes sense to precompute a table of values of f at a sufficiently dense

grid of points. When an actual argument b is given , we look up the values

of f at the closest grid neighbors of b , and use them in order to interpolate

f(b). If the function has some isolated discontinuities , this technique can

be appl ied only to those arguments b whose grid cell does not contain a

discontinuity . We thus get a triple tradeoff between the number of

discontinuities , the grid size , and the fraction of the arguments b for

which f(b) can be interpolated from the table. By fixing this fraction to

one half , we get a relationship between the number of discontinuities and

- 

the complex ity of precomputing the table (as determined by the grid size).

A similar situation exists in high-densit y one-to—one modula r knapsack

systems. Theorem 7 shows that the relationship between target values and

representations in these systems is very smooth , wi th potential disconti-

nuities only at the unrepresentable target values (whose exact l ocations

1
F — —  — — ---- - - . -— -
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are usuall y unknown). If b an-d b’ are two sufficiently close l ocations in

the 0-1-? c1 sequence (which we introduced after Theorem 7), we expect

their values to be equal if b -b ’ I is even , and opposite if ~b -b ’ j is odd .

Consequently, we can interpolate the value of c1 at b from the value of

at its closest grid neighbor b’ whenever the two l ocations are in the same

cont~~uity interval between successive question marks. If these question

marks are few and far between , we can use a small number of grid points in

order to correctly i nterpolate the va l ue of c
~ 

at most of the locations.

We can now descri be the density/security tradeoff result in detail.

Given a one-to-one modular knapsack system a1,... ,an (in) in which

in >> u ~ _ 2 n , we would like to find a representation for a given target

value b. We make the simplifying assumption that (a
~
,m) = 1 for al l I,

and thus each generator can be normalized to 1. (Generators with a smal l

gcd can be handled by similar techniques , while generators with a large gcd ,

if there aren ’t too many of them, can be handled by brute-force methods

once the coefficients c1 of the other generators are determined.)

We proceed in n stages. At the ~th stage , we change the equation

c~a1 = b (mod in) into i
~~l 

c1 (a~~a1 ) = a~~b (mod in) in which the ~
th

generator a~~a~ is 1 ani the target value is a~~b , but in which the r 
-

coefficients c~ remain unchanged . Successive multiples of the generator

become successive integers , and thus the coefficient C
3 

in the representation

of a~~b is just the a~~b-th entry in the appropriate 0-1-? sequence.

We next choose a random set of r representations , and enumerate

theIr corresponding target values in the augmented system (the exact value

of r will be ‘letenni ned l ater). Since these representations are in a

- -  j ,J~
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one-to-one correspondence with the representabl e target values , we get

a uniformly distributed grid of r locations along the 0-1 parts in the

0-1-? sequence , whose values are known . The desired c
3 

value is then

interpolated in the usual way, and the tentative collection of coefficients

~~~~~~~ calculated in the n stages is eventually verified by direct

substitution .

The most time-consuming part in this process is to find the closest

grid neighbor of the location we want to represent. We use a variant of

Horowitz and Sahni ’s algorithm [5]. We divide the (modified) generators

into two halves , and prepare for each half a random list of 0(VF)

representation/target value pairs . If x and y are target values in the

first and second list , respectively, then xi- y (mod m) is a target value

whose representation in the complete system is the concatenation of x ’s

and y’s representations in their respective half systems. Among the 0(r)

possibl e sums we can f i nd the one that best app rox imates a gi ven value z

in the following way. We first sort each one of the two lists into

increas ing target va l ue order, using a linear time bucket sort. Starting

with ~~~~~~~~ we replace x by its list-successor whenever the sum is

smaller than z , and replace y by its list-predecessor whenever the sum is

bigger than z (always recording the best approximation found so far). We

stop when we hit z or when one of the two lists is exhausted . In our

modular case we have to repeat the process twice, with z=a~
1b and

z = a ~~b+m , but the total time complexity, is still 0(v4~).

Our algorithm successfully finds the representation of an (original)

target value b only i-f it is successful in all its n stages. At each stage

there Is a certain fraction of target values for which the interpolation
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gi ves erroneous resul ts , but by making this fraction smaller than l/2n ,
we can guarantee that no more than half of the target values will be

incorrec tly processe d at some stage.

What remains to be done is to show that for an appropriately chosen

number r of grid points , each stage can be made correc t for al l but a
l/2n fraction of the target values .

Definition: Given a U~1-? sequence, the radius of location b in it is the

shortest cyclic distance from b to a question mark.

Lema 15: For every 0-1-? of length m with u question marks , the fraction

of the locations which have radiuses smaller than is at most

Proof: in the interval of radius ~~~~~~ ~~
- around each question mark there

can be at most 
~ 

locations , and thus the number of locations which

are that close to any one of the u question marks is at most ~ -m .

Q .E.D.

By choosing a random grid of, say, r=l000.n•u locations along the

0—1-? sequence, we get an average grid separation of l0~On • 

~
J. , and thus

practically all the locations whose radiuses are bigger than 
~~~~~~ 

will

be closer to a grid point than to a question mark . Although some grids

are better and some gri ds are worse in this respect , the average grid

qual ity (which is what we are interested in when we consider probabilistic

algorithms) is excel l ent and does not depend on the knapsack system or on

the target value involved .

Using this r value , we get:

__________________________________________________________________________ •



—~~~~- w — -

-25-

Theorem 16: The probabilistic median complexity of solving instances of

a one-to—one modular knapsack system with modulus in, n generators and u
unrepresentab le target values i s at mos t 0(n312u1”2).

Proof: Each one of the n phases takes O(v’lOOO.n.u) time, and the total is

thus O(n3”2 u1”2). For every knapsack system with the above parameters ,
the algorithm succeeds (with a very high probability that does not

depend on the system) in finding the representations of at least one half

of the possibl e target values. Q.E.D.

This algorithm is considerably faster- than the best known 0(2th/’2)

algorithm [3] whenever the knapsack system is very-high-density (m ~ 2” >> u),

and it indicates that knapsack systems in which one can both encrypt and sign

messages may be dangernusly overloaded . Although the result does not

directly apply to medium—density (in ~ 2” ~ u) knapsack systems, it seems

best to use different types of knapsack systems for these two tasks, such
as a low-density (in ~~ u >> 2’’) Merkle-Hellman system [6 ] for encryption
and an onto but non one-to-One system (Sharnir [g]) for signature generation .-
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